
January 15, 2021

OPIUM
NETWORK
STAKING
SMART

CONTRACT
AUDIT

 



CONTENTS
1.INTRODUCTION................................................................... 1

DISCLAIMER.................................................................... 1

PROJECT OVERVIEW.............................................................. 1

SECURITY ASSESSMENT METHODOLOGY............................................... 2

EXECUTIVE SUMMARY............................................................. 4

PROJECT DASHBOARD............................................................. 4

2.FINDINGS REPORT................................................................ 6

2.1.CRITICAL.................................................................. 6

2.2.MAJOR..................................................................... 6

MJR-1 Potential lock of  hedge  function execution............................... 6

MJR-2 Potential lock of withdrawal in  OpiumERC20Position ......................... 7

2.3.WARNING................................................................... 8

WRN-1 Add a check that  STAKING_PHASE  is less than  EPOCH ...................... 8

WRN-2 Potentially incorrect staking contract initialization.................... 9

WRN-3 Short position execution validation check............................... 10

2.4.COMMENTS................................................................. 11

CMT-1 Extra  /  in imported file path.......................................... 11

3.ABOUT MIXBYTES................................................................ 12



1.INTRODUCTION

1.1 DISCLAIMER
The audit makes no statements or warranties about utility of the code, safety of

the code, suitability of the business model, investment advice, endorsement of the

platform or its products, regulatory regime for the business model, or any other

statements about fitness of the contracts to purpose, or their bug free status. The

audit documentation is for discussion purposes only. The information presented in

this report is confidential and privileged. If you are reading this report, you

agree to keep it confidential, not to copy, disclose or disseminate without the

agreement of Opium Network (name of Client). If you are not the intended

recipient(s) of this document, please note that any disclosure, copying or

dissemination of its content is strictly forbidden.

1.2 PROJECT OVERVIEW
The Opium protocol is a universal protocol to create, settle and trade virtually

all derivatives and financial instruments in a professional and trustless way. It

allows anyone to build custom exchange-traded products on top of the Ethereum

blockchain. Once created, they can be traded freely via a network of relayers and

will be priced according to supply and demand.

1



1.3 SECURITY ASSESSMENT METHODOLOGY
At least 2 auditors are involved in the work on the audit who check the

provided source code independently of each other in accordance with the

methodology described below:

01 "Blind" audit includes:

> Manual code study

> "Reverse" research and study of the architecture of the code based on the

source code only

Stage goal:

Building an independent view of the project's architecture

Finding logical flaws

02 Checking the code against the checklist of known vulnerabilities includes:

> Manual code check for vulnerabilities from the company's internal checklist

> The company's checklist is constantly updated based on the analysis of

hacks, research and audit of the clients' code

Stage goal:

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flashloan

attacks, etc.)

03 Checking the logic, architecture of the security model for compliance with

the desired model, which includes:

> Detailed study of the project documentation

> Examining contracts tests

> Examining comments in code

> Comparison of the desired model obtained during the study with the reversed

view obtained during the blind audit

Stage goal:

Detection of inconsistencies with the desired model

04 Consolidation of the reports from all auditors into one common interim report

document

> Cross check: each auditor reviews the reports of the others

> Discussion of the found issues by the auditors

> Formation of a general (merged) report

Stage goal:

Re-check all the problems for relevance and correctness of the threat level

Provide the client with an interim report

05 Bug fixing & re-check.

> Client fixes or comments on every issue

> Upon completion of the bug fixing, the auditors double-check each fix and

set the statuses with a link to the fix

Stage goal:

Preparation of the final code version with all the fixes

06 Preparation of the final audit report and delivery to the customer.

2



Findings discovered during the audit are classified as follows:

FINDINGS SEVERITY BREAKDOWN

Level Description Required action

Critical Bugs leading to assets theft, fund access
locking, or any other loss funds to be
transferred to any party

Immediate action
to fix issue

Major Bugs that can trigger a contract failure.
Further recovery is possible only by manual
modification of the contract state or
replacement.

Implement fix as
soon as possible

Warning Bugs that can break the intended contract
logic or expose it to DoS attacks

Take into
consideration and
implement fix in
certain period

Comment Other issues and recommendations reported
to/acknowledged by the team

Take into
consideration

Based on the feedback received from the Customer's team regarding the list of

findings discovered by the Contractor, they are assigned the following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no
longer affect its security.

Acknowledged The project team is aware of this finding. Recommendations for
this finding are planned to be resolved in the future. This
finding does not affect the overall safety of the project.

No issue Finding does not affect the overall safety of the project and
does not violate the logic of its work.

3



1.4 EXECUTIVE SUMMARY
The audited scope includes a staking mechanism based on Opium protocol. Staking

contract allows users to organize and participate in pools of some specific

positions on Opium core protocol. The project includes two main modules: a staking

module that implements general staking functionality and a position tokenization

module that wraps Opium positions into ERC-20 token.

1.5 PROJECT DASHBOARD

Client Opium Network

Audit name Staking Smart Contract Audit

Initial version a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb

Final version e5cf6cd8708b221f395b061767fb5c14ec21bbd1

SLOC 332

Date 2020-12-21 - 2021-01-15

Auditors engaged 2 auditors

FILES LISTING

OpiumERC20Position.sol OpiumERC20Position.sol

OpiumStakingErrors.sol OpiumStakingErrors.sol

OpiumStakingDerivatives.sol OpiumStakingDerivatives.sol

OpiumStaking.sol OpiumStaking.sol

4

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/PositionsTokenization/OpiumERC20Position.sol
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingErrors.sol
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStaking.sol


FINDINGS SUMMARY

Level Amount

Critical 0

Major 2

Warning 3

Comment 1

CONCLUSION

Smart contracts have been audited and several suspicious places have been spotted.

During the audit no critical issues were found, two issues were marked as major

because they could lead to some undesired behavior, also several warnings and

comments were found and discussed with the client. After working on the reported

findings all of them were resolved or acknowledged (if the problem was not

critical). So, the contracts are assumed as secure to use according to our security

criteria.

5



2.FINDINGS REPORT

2.1 CRITICAL
Not Found

2.2 MAJOR

MJR-1 Potential lock of  hedge  function execution

File OpiumStakingDerivatives.sol

Severity Major

Status Fixed at 25e09749

DESCRIPTION

At line OpiumStakingDerivatives.sol#L177 the contract uses the  safeApprove  method,

but this method has some implicit behavior that can lead to call failure in case if

the token owner account has already a non-zero allowance. So basically, some

unspent allowance can block the  hedge  function execution.

RECOMMENDATION

We recommend using a trick with allowance zeroing before setting a new one to avoid

potential issues. The code can look like:

underlying.safeApprove(address(opiumTokenSpender), 0);

underlying.safeApprove(address(opiumTokenSpender), requiredMargin);

6

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/25e097490dc744cf80c5b133bf8b1d0d50a7da60
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol#L177


MJR-2 Potential lock of withdrawal in  OpiumERC20Position

File OpiumERC20Position.sol

Severity Major

Status Fixed at 04cdbc77

DESCRIPTION

The  OpiumERC20Position  contract has the withdraw  method that burns a position token

and transfers an underlying token to  msg.sender . According to the specification and

code, withdrawal is allowed only after position execution that the condition is

checked by the following code at lines OpiumERC20Position.sol#L67-L68

uint256 contractPositionsBalance = tokenMinter.balanceOf(address(this), tokenId);

require(contractPositionsBalance == 0, ERROR_CANT_WITHDRAW_BEFORE_EXECUTION);

So, as we can see the execution is possible only if  contractPositionsBalance  is zero

that happens after position execution, but an attacker can use a front-running

vector and send a small amount of token to the contract address in each block or

before each withdrawal attempt. This vector can block withdrawals for an undefined

time period.

Also the same issue is spotted in the  isStaking  modifier of OpiumStakingDerivatives

contract here: OpiumStakingDerivatives.sol#L139-L140. Here this issue can lead to

blocking all the functions which used this modifier for an undefined time period as

well.

RECOMMENDATION

We recommend to call execute in withdraw function.

CLIENT'S COMMENTARY

We decided to not call execute on withdrawals, because it led to other code

changes.

7

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/PositionsTokenization/OpiumERC20Position.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/04cdbc77d19bc630f774dca859345019ace83d6c
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/PositionsTokenization/OpiumERC20Position.sol#L67-L68
https://github.com/Alirun/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol#L139-L140


2.3 WARNING

WRN-1 Add a check that  STAKING_PHASE  is less than  EPOCH

File OpiumStakingDerivatives.sol

Severity Warning

Status Fixed at 3ea1e508

DESCRIPTION

According to epoch lifecycle logic  STAKING_PHASE  should be less than  EPOCH  but that

invariant is never checked before initialization: OpiumStakingDerivatives.sol#L59-

L60

RECOMMENDATION

We suggest adding a particular check.

8

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/3ea1e5083db13a57a090d72dcb202c30912c606e
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol#L59-L60


WRN-2 Potentially incorrect staking contract initialization

File OpiumStaking.sol

Severity Warning

Status Fixed at 9a52b689

DESCRIPTION

This issue is about the  OpiumStaking  contract that can possibly be initialized

incorrectly with a  _derivative  argument being passed without additional validation

in here: OpiumStaking.sol#L34.

Incorrect initialization can lead to the corruption of the state, which will

require for the contract to be re-deployed.

RECOMMENDATION

It is recommended to introduce an additional check on the input  _derivative

parameter validity using additional application-logic related checks just as it was

done in here: OpiumCdsSyntheticId.sol#L37.

9

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStaking.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/9a52b6896c138538f44ad5e6cf6491ae3aaf9c6a
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStaking.sol#L34
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/mocks/OpiumCdsSyntheticId.sol#L37


WRN-3 Short position execution validation check

File OpiumStakingDerivatives.sol

Severity Warning

Status Fixed at 9a52b689

DESCRIPTION

This issue is about an absent check whether epoch timings and  shortTokenId  are

correct for executing short positions within the  OpiumStakingDerivatives  contract.

Using  execute()  defined at OpiumStakingDerivatives.sol#L118 right after the

contract initialization with uninitialized  shortTokenId  (which would also mean no

initializeEpoch  was called) may lead to the incorrect contract behavior from the

application logic point of view.

RECOMMENDATION

It is recommended to introduce additional checks on the shortTokenId  variable to

make sure the epoch was initialized and there will be no attempt to execute short

positions with incorrect data usage.

10

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/9a52b6896c138538f44ad5e6cf6491ae3aaf9c6a
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol#L118


2.4 COMMENTS

CMT-1 Extra  /  in imported file path

File OpiumStakingDerivatives.sol

Severity Comment

Status Fixed at be06b198

DESCRIPTION

At line OpiumStakingDerivatives.sol#L16 there is an extra  /  in the imported file

path:

import "../PositionsTokenization//OpiumERC20Position.sol";

RECOMMENDATION

We suggest removing the extra  /  character.

11

https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol
https://github.com/OpiumProtocol/opium-staking-contract/commit/be06b1982b249e79cf5e81114ed31ebf280ab82a
https://github.com/OpiumProtocol/opium-staking-contract/blob/a1a3518f6c1af90d4c196d1ee76d30f26ce0f8eb/contracts/Staking/OpiumStakingDerivatives.sol#L16


3.ABOUT MIXBYTES
MixBytes is a team of blockchain developers, auditors and analysts keen on

decentralized systems. We build open-source solutions, smart contracts and

blockchain protocols, perform security audits, work on benchmarking and software

testing solutions, do research and tech consultancy.

BLOCKCHAINS

Ethereum

EOS

Cosmos

Substrate

TECH STACK

Python

Rust

Solidity

C++

CONTACTS

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://t.me/MixBytes

https://twitter.com/mixbytes

12

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://t.me/MixBytes
https://twitter.com/mixbytes



